Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes.
نویسندگان
چکیده
Isolated diastolic dysfunction is found in almost half of asymptomatic patients with well-controlled diabetes and may precede diastolic heart failure. However, mechanisms that underlie diastolic dysfunction during diabetes are not well understood. We tested the hypothesis that isolated diastolic dysfunction is associated with impaired myocardial Ca(2+) handling during type 1 diabetes. Streptozotocin-induced diabetic rats were compared with age-matched placebo-treated rats. Global left ventricular myocardial performance and systolic function were preserved in diabetic animals. Diabetes-induced diastolic dysfunction was evident on Doppler flow imaging, based on the altered patterns of mitral inflow and pulmonary venous flows. In isolated ventricular myocytes, diabetes resulted in significant prolongation of action potential duration compared with controls, with afterdepolarizations occurring in diabetic myocytes (P < 0.05). Sustained outward K(+) current and peak outward component of the inward rectifier were reduced in diabetic myocytes, while transient outward current was increased. There was no significant change in L-type Ca(2+) current; however, Ca(2+) transient amplitude was reduced and transient decay was prolonged by 38% in diabetic compared with control myocytes (P < 0.05). Sarcoplasmic reticulum Ca(2+) load (estimated by measuring the integral of caffeine-evoked Na(+)-Ca(2+) exchanger current and Ca(2+) transient amplitudes) was reduced by approximately 50% in diabetic myocytes (P < 0.05). In permeabilized myocytes, Ca(2+) spark amplitude and frequency were reduced by 34 and 20%, respectively, in diabetic compared with control myocytes (P < 0.05). Sarco(endo)plasmic reticulum Ca(2+)-ATPase-2a protein levels were decreased during diabetes. These data suggest that in vitro impairment of Ca(2+) reuptake during myocyte relaxation contributes to in vivo diastolic dysfunction, with preserved global systolic function, during diabetes.
منابع مشابه
Translational Physiology Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes
Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, Feldman DS, Györke S, Carnes CA. Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 293: R1787–R1797, 2007. First published August 29, 2007; doi:10.1152/ajpregu.00059.2007.—Isolated diastolic dysfunction is found in almost half o...
متن کاملImpaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction
BACKGROUND Diastolic dysfunction is a key factor in the development and pathology of cardiac dysfunction in diabetes, however the exact underlying mechanism remains unknown, especially in humans. We aimed to measure contraction, relaxation, expression of calcium-handling proteins and fibrosis in myocardium of diabetic patients with preserved systolic function. METHODS Right atrial appendages ...
متن کاملDetection and potential mechanisms of subclinical left ventricular dysfunction in asymptomatic young adults with Type-2 Diabetes
Background There is an epidemic of obesity and Type-2 Diabetes Mellitus (T2DM) in the developed world. Subclinical diastolic dysfunction in diabetes is associated with the development of overt heart failure. Although diabetic cardiomyopathy is well documented in older adults with T2DM there are scarce data on younger adults and no published CMR data. We aimed to assess the prevalence and potent...
متن کاملTroglitazone attenuates high-glucose-induced abnormalities in relaxation and intracellular calcium in rat ventricular myocytes.
Diabetes is associated with impaired cardiac diastolic dysfunction. Isolated ventricular myocytes from diabetic animals demonstrate impaired relaxation concomitant with prolonged intracellular Ca2+ transients. We have recently shown that maintaining normal adult rat ventricular myocytes in a "diabetic-like" culture medium (low insulin and high glucose) produces abnormalities in excitation-contr...
متن کاملDiabetic Cardiomyopathy; Summary of 41 Years
Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 293 5 شماره
صفحات -
تاریخ انتشار 2007